Backcalculation of pavement layer parameters using Artificial Neural Networks

نویسندگان

  • Mehmet Saltan
  • Serdal Terzi
چکیده

In this paper, a new formulation based on Artificial Neural Networks (ANN) is presented for backcalculation of pavement layer moduli. In structural analysis of flexible pavements, the procedures as Layered Elastic Theory, Equivalent Layer Thickness (ELT), and Finite Elements Method (FEM) generally have complex formulations and give approximate results. Therefore, it is extremely difficult to perform realistic analysis for flexible pavements, especially in view of modelling the material properties of layers in these methods. Setting the finite element mesh and iteration procedure of backcalculation takes rather long time. The proposed ANN procedure requires significantly less computation time. ELT method is used for simplicity. It is impossible or very hard to model the visco-elastic and non-linear behaviour of layer materials in layered elastic theory. The use of ANN is proliferating with high rate in simulation. The ability of ANN is to learn complex nonlinear relationships. A new formulation using ANN is presented here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backcalculation of Airport Flexible Pavement Non-Linear Moduli Using Artificial Neural Networks

The Heavy Weight Deflectometer (HWD) test is one of the most widely used tests for assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers “backcalculated” from the HWD deflection measurements are effective indicators of layer condition. Most of the backcalculation programs that are currently in use do not account...

متن کامل

Rigid Pavement Backcalculation Using Differential Evolution

The backcalculation of pavement layer moduli from Falling Weight Deflectometer (FWD) measured surface deflections is a challenging task. It can also be formulated as a global optimization problem with the objective of finding the optimal pavement layer moduli values that minimize the error between measured and computed surface deflections. Over the years, several backcalculation methodologies h...

متن کامل

Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements...

متن کامل

Comparative analysis of using artificial neural networks (ANN) and gene expression programming (GEP) in backcalculation of pavement layer thickness

Pavement deflection data are often used to evaluate a pavement’s structural condition non-destructively. It is essential not only to evaluate the structural integrity of an existing pavement but also to have accurate information on pavement surface condition in order to establish a reasonable pavement rehabilitation design system. Pavement layers are characterized by their elastic moduli estima...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010